1. Patient referral

Guideline 1.1. An early plan for venous preservation should be a substantial part of pre-dialysis care and education in any chronic kidney disease (CKD) patient regardless the choice of treatment modality (Evidence level IV).

Guideline 1.2. Every chronic renal failure patient, who have opted for haemodialysis, should start dialysis with a functioning vascular access (Evidence level III).

Guideline 1.3. Potential chronic haemodialysis (HD) patients should be ideally referred to the nephrologist and/or surgeon for preparing vascular access when they reach the stage 4 of their CKD (glomerular filtration rate <30 ml/min/1.73 m²) or earlier in case of rapidly progressive nephropathy or specific clinical conditions such as diabetes or severe peripheral vascular disease (Evidence level III).

Rationale

Early referral of CKD patients to the nephrologist and/or vascular surgeon is strongly recommended. This is to start a policy to preserve access sites and to allow adequate time for planning, creation and maturation of the vascular access. The planning stage involves examination and pre-operative vascular mapping. An autogenous fistula requires at least 6 weeks for maturation before it can be used. Additional time may be required for interventional or surgical revisions to enhance maturation. For these reasons, it is recommended that the fistula is created at least 2–3 months before the earliest likely date for starting haemodialysis. Prosthetic graft AVFs do not need a maturation period and can be cannulated 2–3 weeks after implantation. However, prosthetic graft AVFs are not recommended as primary vascular access. This approach is recommended to minimize the use of catheters and to reduce catheter-related morbidity and need for hospitalization. Early referral to the nephrologist is also required for psychological preparation for dialysis, discussion of all options for dialysis modality, interventions to delay progression of renal damage and to correct the hypertension, anaemia and metabolic effects of renal failure [1–5].
Recommendations for future research

Streamlining of early patient referral and organization of predialysis care are major subjects for research. A policy of venous preservation should be educated and implemented.

References

2. Pre-operative evaluation

Guideline 2.1. Clinical evaluation and non-invasive ultrasonography of upper extremity arteries and veins should be performed before vascular access creation (Evidence level II).

Guideline 2.2. Central vein imaging is indicated in patients with a history of previous central vein catheters (Evidence level IV).

Rationale

There is a significant failure rate for autogenous arteriovenous fistulae (AVFs), estimated at 0.2 events per patient/year. For graft AVF, this increases to 0.8–1.0 events per patient/year. In a recent meta-analysis, the primary failure rate for autogenous wrist AVF was 15.3%. Primary and secondary 1-year patency rates were 62.5 and 66.0% [1]. Nowadays, the chronic dialysis population is becoming elderly and is increasingly likely to have diabetes, peripheral arterial obstructive disease (PAOD) or coronary artery disease. Many of these patients have poor vessels for construction of autogenous fistulae and this may be the major reason for the high primary failure and moderate long-term patency.

Physical examination

Careful selection of suitable vessels based on objective evaluation, is required for successful creation of a functioning AVF. Physical examination is used for pre-operative assessment and access planning. This includes assessment of the distal arterial pulse and the presence, diameter and course of the superficial fore- and upper arm veins. Physical examination may be difficult in obese patients and depends on the experience of the examiner.

Ultrasonography

Pre-operative vessel assessment with ultrasonography enhances the success of creation and the outcome of autogenous AVF. In a randomized trial, the primary AVF failure rate was 25% when pre-operative assessment depended on physical examination alone, compared with 6% (P = 0.002) when ultrasonography was used [2]. In the study performed by Silva et al. [3] strategies for vascular access creation were based on pre-operative duplex scanning. Patients with a radial artery diameter of ≥2 mm and a cephalic vein diameter of ≥2.5 mm received radial-cephalic AVFs (RCAVF). Grafts were used in patients with insufficient radial arteries or cephalic veins and in those with outflow vein in the elbow with a diameter of ≥4 mm. The percentage of RCAVF creation increased from 14% to 63%, while the early failure rate decreased from 36% to 8% [3]. In other studies, the fistula rate increased from 17–35% to 58–85% [4–7]. All studies were performed in American dialysis facilities with their historical low autogenous fistula creation rate in past years.

One study showed that the functional maturation rate of AVFs decreased from 73% to 57% as the autogenous fistula creation rate increased from 61% to 73% after the implementation of pre-operative duplex scanning [8]. This outcome suggests that other selection criteria based on findings at pre-operative imaging are needed to further refine and optimize arteriovenous access surgery. Pre-operative ultrasound screening is especially useful in obese patients. AVF rates were similar in 50 patients with body mass index (BMI) >27 kg/m² compared with 130 patients with lower BMI when pre-operative vein mapping was employed [9].

Arterial imaging

Radial artery diameter predicts the outcome (failure or dysmaturation) of RCAVF and influences the strategy for vascular access creation. Wong et al. [10] observed either thrombosis or failure to maturation in all RCAVFs created in patients with a radial artery diameter of <1.6 mm. In another study, successful RCAVFs had a pre-operatively measured radial artery diameter of 2.7 mm vs 1.9 mm in failed RCAVFs [11]. Malovrh discriminated between RCAVFs created with radial arteries, with a diameter >1.5 mm vs ≤1.5 mm. Immediate patency rate in the >1.5 mm group was 92 vs 45% in the ≤1.5 mm group, while the patency rates after 12 weeks were 83% vs 36%, respectively [12]. The predictive value of the radial artery peak systolic velocity (PSV) and resistance index (RI), calculated from pre-operative ultrasonographic parameters, is uncertain [10,13,14]. However, Malovrh showed a significant correlation between radial artery RI (0.50 vs 0.70), diameter (0.294 vs 0.171 cm), and flow (90 vs 33 ml/min) during pre-operative hyperaemia testing and the outcome of AVF creation [15].

Venous imaging

Vein diameters of <1.6 mm have been associated with AVF failure [10], while good patency rates were obtained in patients with RCAVFs where the diameter of the cephalic vein at the wrist was ≥2–2.6 mm or upper arm veins >3 mm [16]. The cephalic vein diameter increase after application of a proximal tourniquet is an important predictor of success. In a group of successfully created AV fistulae, the vein diameter increased by 48%, while vein diameter only increased by 11.8% in the group of failed AV fistulae [15].
Arterial and venous vessel selection

From the available literature (Table 1) a minimal diameter of the anastomosed vessels (radial artery and cephalic vein) of 2.0 mm is advisable for the creation of successful RCAVFs. Critical minimal diameters of cubital and/or upper arm vessels for the creation of successful elbow/upper arm fistula creation are not established.

Venous preservation with additional handgrip exercise may enhance the quality and diameters of arteries and veins for fistula creation [17].

Venography and magnetic resonance angiography

Conventional iodine venography may cause permanent deterioration in renal function in patients with severe renal damage. It is, therefore, not suitable for patients who are preparing for dialysis or for dialysis patients with some residual renal function. Gadolinium is a safe alternative to iodine venography with acceptable inter-observer correlation regarding imaging quality ($\kappa = 0.62$) and strategy planning ($\kappa = 0.64$) [18]. CO$_2$ angio/venography can also be employed, because of its low risk of renal function deterioration.

Magnetic resonance angiography (MRA), with either time-of-flight (TOF) or contrast-enhanced (Gadolinium) technique (CE-MRA) has been rarely used for access planning. CE-MRA results in a good visualization of arm veins. Diameter measurements were closely correlated overall ($r = 0.91$) and on a vein-to-vein basis ($r = 0.84–0.98$) compared with conventional venography [19]. Studies on the diagnostic accuracy of preoperative MRA vs duplex scanning, however, are lacking. Central vein imaging can be accurately performed by CE-MRA [20]. Alternatively, MRA has the potential for imaging of both arterial and venous vessels.

Table 1. Vessel diameters for successful RCAVF creation

<table>
<thead>
<tr>
<th>Author</th>
<th>Radial artery (mm)</th>
<th>Cephalic vein (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wong et al. [10]</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Malovrh [12]</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Silva et al. [3]</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Ascher et al. [21]</td>
<td>–</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Recommendations for future research

Detection of significant pre-operative parameters for successful fistula creation and maturation remains a major issue for further investigation. Newer imaging techniques with high-resolution quality should be further developed.

References

20. Paksoy Y,gormus N, Tercan MA. Three-dimensional contrast-enhanced magnetic resonance angiography (3-D CE-MRA) in the evaluation of hemodialysis access complications, and the condition of central veins in patients who are candidates for hemodialysis access. *J Nephrol* 2004; 17: 57–65
3. Strategies for access creation

Guideline 3.1. The access should provide sufficient blood flow to perform adequate haemodialysis (Evidence level II).

Guideline 3.2. Autogenous arteriovenous fistulae should be preferred over AV grafts and AV grafts should be preferred over catheters (Evidence level III).

Guideline 3.3. The upper extremity arteriovenous fistula should be the preferred access and should be placed as distal as possible (Evidence level III).

Guideline 3.4. Fistula maturation should be monitored to allow pre-emptive intervention if needed (Evidence level III).

Rationale

For decades there have been remarkable differences in strategy for access creation between Europe and the USA. In Europe, the majority of new and incident patients receive autogenous arteriovenous fistulae (AVF), whereas in the USA prosthetic graft placement remains the access of choice in most of the dialysis facilities (AVF 80% vs 24%; graft 16% vs 70%). The reason for this marked difference is not clear, although patient comorbidity seems to be more pronounced in USA and this could influence the strategy for access creation. Data from DOPPS (Dialysis Outcome and Practice Pattern Study) showed that rates of diabetes mellitus (46% vs 22%), peripheral arterial obstructive disease (PAOD) (23% vs 19%), coronary artery sclerosis (37% vs 25%) and obesity are significantly higher in the American dialysis population [1,2]. It is estimated that an AVF needs 0.2 interventions per patient/year compared with 1.0 intervention per patient/year for prosthetic graft fistulae for access salvage. In addition, long-term primary access survival (patency rate) differs significantly, ranging from 90% to 85% for AVF and from 60% to 40% for graft at one and 2 years of follow-up [3]. With intensive access monitoring and surveillance, the secondary survival of grafts may rise due to a pre-emptive stenosis repair policy. The patency rate for grafts may be comparable with AVFs, ranging from 90% to 70% at 1 and 2 years of follow-up, respectively.

Ifudu et al. [4] stated that grafts do not permit the delivery of better haemodialysis than autogenous arteriovenous fistulae. They analysed 214 patients over a period of 1 month by urea reduction ratio; serum albumin concentration was used as a secondary outcome measure of dialysis adequacy [4].

Primary choice for vascular access

Autogenous AVF creation

Radial-cephalic AVF. The wrist radial-cephalic (RC) AVF is the first option for access creation. When the RCAVF matures adequately, it may function for years with a minimum of complications, revisions and interventions. The high early thrombosis/non-maturation percentage is the major disadvantage of this access and is usually influenced by patient factors like age, diabetes mellitus and the presence of cardio-vascular disease. Early failure rates range from 5% to 30% [5,6] and long-term patency from 65–90 to 60–80% at one and 2 years of follow-up, respectively. The incidence of thrombosis (0.2 events per patient/year) and infection (2%) is low.

Proximal forearm AVF. When a wrist RCVF is impossible due to poor vessels a more proximally located anastomosis from the mid-forearm to the elbow between the radial artery and cephalic vein may be employed.

Brachial-cubital/cephalic/basilic AVF. When peripheral vessels are too tiny and diseased for the creation of an RCAVF, more proximal fistulae are indicated at the elbow and upper-arm region. These AVFs (brachial-cubital = Gracz; brachial-cephalic and brachial-basilic) generate a high blood flow which is favourable for high-efficiency dialysis. The incidence of thrombotic and infectious complications is low and long-term outcome is usually good [7–17]. The major disadvantages of these high-flow AVFs are the risk of distal hypoperfusion, which may lead to symptomatic hand ischaemia, and high-output cardiac failure, particularly in patients with coronary artery disease and/or cardiac failure [18].

Early access failure and interventions

The success rate for AVFs should be enhanced by pre-operative vessel assessment (see Guideline 2), perioperative vasodilatation [19] and post-operative monitoring of maturation. Access blood flow measurement by Doppler ultrasound at day 1 and 7 after operation is indicative of successful maturation. AVFs with initial blood flow rates of <400 ml/min fail to mature in the majority of cases [20,21]. Increased post-operative blood flow through the AVF with high shear stress on the vessel wall initiate the process of vessel adaptation (remodelling) resulting in vessel dilatation and further flow increase. Inability of vessel adaptation is usually due to the presence of significant stenoses or small arterial inflow vessels. Diagnostic angiography or ultrasound evaluation is indicated when there is failure of maturation. Percutaneous intervention (PTA) is indicated for any stenosis, and
when not successful surgical revision can be considered [22–24].

The use of non-penetrating vascular clips for arteriovenous anastomosis may cause less endothelial cell damage and reduce the smooth muscle cell proliferation which leads to intimal hyperplasia (IH) [25–27].

Patient variables and outcome of vascular access

Several studies have shown that patient variables may have an important impact on the choice and outcome of vascular access. Age may have an influence on post-operative blood flow in newly created autogenous fistulae, which results in a slightly higher failure rate compared with young patients (18.9 vs 13.6%) [28]. However, the combination of age and diabetes does have an impact on fistula outcome with significantly higher failure rates (28.6%). Large European, Australian and American population-based studies have shown an increased percentage of grafts in elderly patients. In Europe, the use of grafts increased from 5% in patients <45 years to 8.8% in patients >75 years of age [29,30]. In Australia and USA, significant odds ratios were calculated indicating age as a predictive factor for graft use in incident and prevalent patients. In addition, grafts were associated with poor outcome in terms of primary failure and with a higher incidence of revisions compared with fistulae [31–34]. On the other hand, grafts may do well in the higher age group over 70 years. Staramos et al. [35] showed better patency at 2 and 3 year for prosthetic grafts compared with fistulae. This difference can be explained by the high number of dropouts due to early failure of the fistulae (24 vs 11%).

Women usually have smaller arteries and veins and, therefore, may do worse compared with men. And this may be the reason for poorer maturation and survival rates of vascular access. However, the literature remains contradictory. Caplin et al. [36] showed that arterial and venous diameters were not significantly different between men and women and functioning fistulae were created in 72% of the female and 77% of the male patients. In a meta-analysis of RCAVF, women had similar maturation and 1-year patency rates as men. It is possible that pre-operative vessel selection for AV anastomosis influenced the outcome of access creation, irrespective of gender [5].

Other studies showed that female gender was associated with an increased use of grafts and a higher number of access revisions [30,32,34,37–40]. In the HEMO study, Allon et al. [41] found female gender, PAOD, black race, body mass index (BMI) and older age, significant predictor variables for the chance on fistula use. In addition, they found remarkable differences in the percentage of fistulae used in the different dialysis facilities (ranging from 4% to 77%).

Influence of comorbidity on vascular access creation and outcome

During the past decade there has been a shift in the aetiology of end-stage renal failure. Diabetes mellitus and arteriosclerosis are now the most important causes for dialysis treatment. The presence of diabetes and concomitant arteriosclerosis may have an additional negative impact on the chance of successful access creation [38]. These patients usually have poor, thickened and calcified arteries with proximal and/or distal vessel obstruction [42]. Access creation is more difficult, and the risk of symptomatic ischaemia of the upper and lower extremity due to access-induced steal syndrome is significant (see Guideline 9). Many studies report a correlation between the use of prosthetic graft AVF and the prevalence of diabetes in their population. The probability of graft thrombosis is significantly higher in diabetic patients, which results in decreased graft survival [43]. On the other hand, autogenous fistula creation can certainly be successful in patients with diabetes. Similar percentages of primary fistula creation with the use of comparable vessel diameters in non-diabetic and diabetic patients have been reported but more vessel calcifications were detected in diabetics [44]. Excellent results of primary fistula creation even in diabetics have been described by Konner et al. [17]. Three types of fistulae were created and none of the patients needed grafts. RCAVF were created in 62 and 23% of patients (non-diabetics vs diabetics), while more proximal forearm and elbow AVFs were needed in diabetics (77%). Primary access survival was similar, however, secondary survival was better in non-diabetics at 2 years of follow-up. Ischaemia occurred significantly more frequently in the diabetic group (7 vs 0.6 events per 100 patient/years).

Homocysteine levels do not have any influence on vascular access failure [45], while elevated lipoprotein among black dialysis patients may be a risk factor for access complications [46]. Chou et al. [47] identified in a retrospective analysis CRP as an independent predictor for AV fistula thrombosis. The association between specific drug use and access failure was investigated in the DOPPS study. Treatment with calcium channel blockers, aspirin and angiotensin-converting enzyme inhibitors resulted in improved graft and fistula patency [48].

Non-patient variables and success of fistula creation

Late referral and starting dialysis treatment with a central venous catheter reduce the chance of successful autogenous fistula creation [49–51]. Experience and dedication of the physician performing vascular access surgery have a considerable influence on outcome. Prischl et al. [52] showed that the experience of the operating surgeon was the major determinant for the patency of RC fistulae. Some nephrologists create vascular access themselves and
it has been shown that this approach may result in a higher number of functioning fistulae [53,54].

Vascular access morbidity, hospitalization and mortality

The probability of any access-related hospitalization is greater for patients with grafts than for those with fistulae. Reasons include thrombosis, infection and sepsis [55–58]. In diabetic patients, the mortality rate is higher for those with grafts or central venous catheters, compared with those with autogenous AVF. In particular, there were more infection-related deaths in both diabetic and non-diabetic patients with central venous catheters compared with those with AVF. AV shunting may increase cardiac risk and death, however, this hypothesis could not been proven in a large patient group [59]. On the other hand, left ventricular hypertrophy does occur in patients with vascular access [60] and may be normalized after access closure in patients with functioning renal transplants [61].

Second choice for vascular access

Upper extremity non-autogenous vascular access

When autogenous AVF creation is impossible or the fistula has failed, one may decide to implant grafts as a vascular access conduit. Greater saphenous vein translocation or homologous saphenous vein implants have been used for some time with moderate translocation or homologous saphenous vein implants as a vascular access conduit. Greater saphenous vein fistula has failed, one may decide to implant grafts when autogenous AVF creation is impossible or the upper extremity non-autogenous vascular access closure in patients with functioning renal transplants [61].

Anticoagulants and graft patency

The use of warfarin or aspirin on graft survival has been studied [81–83]. In a randomized controlled trial, time-to-graft failure was not significantly different in the treatment group receiving warfarin compared with controls. However, major bleeding occurred in 10% of patients in the warfarin group compared with none in the control group [84]. In the DOPPS study, patients that used anticoagulants such as warfarin, showed even worse graft survival [48]. In another study, aspirin and dipyridamole (Persantin®) administration was compared with a placebo group. Only dipyridamole showed a beneficial effect on thrombosis with a relative risk of 0.35 (P = 0.02) [85]. Kaufman et al. [86] showed no effect of aspirin and clopidogrel (Plavix®) on graft thrombosis and in their randomized study the risk of bleeding complications was substantial.

A Cochrane database study showed good results of ticlopidine on AVF and graft patency in a total number of 312 patients [87]. The administration of pentoxifylline does not improve graft patency [88].

Radiation and graft patency

External beam radiation and intravascular brachytherapy have been administered to prosthetic graft AVFs to inhibit smooth muscle cells to proliferate at the venous anastomosis [89]. In animal studies, beneficial effects could be demonstrated, however, in patient groups no improvement in graft patency was shown and the risk of adverse effects such as infection increased [90]. Randomized studies could not show any advantage of external radiation on graft patency rates [91,92].

Measures to improve graft patency

Numerous experimental and clinical studies have been employed to outline the influence of type of graft and graft design on graft patency. Modulating the geometry of the arterial inlet and/or venous outlet of the graft could possibly have a beneficial effect on IH. Clinical studies using tapered (at the arterial side of the graft) grafts did not show better patency rates nor did cuff implantation at the venous anastomosis. However, primary patency did improve with the use of a cuff-shaped prosthesis (Venaflo®) [75–79]. Compliant grafts could probably influence IH by the better matching of the stiff prosthesis with the compliant vein at the anastomotic site. However, in clinical studies this feature was not proven [80].
Lower extremity autogenous and non-autogenous vascular access

Probably the only indication for lower extremity vascular access is bilateral central venous or caval vein obstruction, which endangers the outflow of upper extremity AVF. Saphenous or superficial femoral vein transposition are primary options for thigh AVF with a relatively high risk on ischaemia (see Guideline 9). Clinical follow-up and primary flow reduction by tapering of the anastomosis are indicated to prevent ischaemia [93,94]. Prosthetic graft implantation in the thigh has a high risk of infection and septicemia [95–97].

Third choice for vascular access

Central venous catheter

There may be a few indications for permanent tunnelled central venous catheters as an (primary) option for vascular access. Patients with severe access-induced upper extremity ischaemia or cardiac failure may be candidates for catheters. Life expectancy for these patients is likely to be poor and the need for vascular access limited to some months. The same holds true for patients with disseminated cancers.

Recommendations for future research

Despite the rationale of creating autogenous fistulae for vascular access, research into the development of new non-thrombotic grafts and the prevention of IH remains of utmost importance.

References

5. Rooijens PPGM, Tordoir JHM, Stijnen T, Burgmans JPJ, Smet EBUGP on vascular access i95

69. Garcia-Pajares R, Polo JR, Flores A, Gonzalez-Tabares E, Solis JV. Upper arm polytetrafluoroethylene grafts for dialysis access. Analysis of two different graft sizes: 6 mm and 6–8 mm. Vasc Endovasc Surg 2003; 37: 335–343

4. Role of nurses and staff in access management

Guideline 4.1. Nurses and medical staff should be involved in vein preservation and monitoring of the vascular access. Every patient with chronic kidney disease should have a declared plan for preserving the vascular access and potential access sites (Evidence level IV).

Guideline 4.2. Any staff involved in handling vascular access or cannulating veins in renal patients should be adequately trained and be in a continuous training scheme for access management (Evidence level IV).

Guideline 4.3. An autogenous fistula should be cannulated when adequate maturation has occurred (Evidence level III).

Guideline 4.4. The rope ladder technique should be used for cannulation of grafts (Evidence level III).

Rationale

A substantial part of the pre-dialysis care is the preservation of veins in both arms, favouring the use of the veins of the dorsum of the hand for blood sampling, infusions and transfusions [1]. After placement of the initial vascular access, preferably an autogenous AVF, the correct needling technique has a favourable influence on maturation and fistula lifespan. Nurses play a pivotal role in the care for vascular access: they see the patient every dialysis, perform cannulation and assess function of the vascular access [2]. The vascular access should be checked before each cannulation by inspection and palpation. Nurses train patients and partners to perform home haemodialysis. This includes teaching about vascular access and (self-) cannulation [3].

Nurses generally have more practical experience and skills for cannulating and managing vascular access than physicians. Written protocols for cannulation, handling central venous catheters and physical examination of the vascular access prior to cannulation should be provided. The nephrologist bears ultimate responsibility to ensure adequate standards and training in the delivery of care for the vascular access. While this care is almost always delivered by others, the nephrologist should be involved in the training and monitoring of standards. Training courses in vascular access have been initiated for residents, vascular surgeons and nephrologists in the Netherlands and for nurses in France and Turkey [4]. Examinations and qualifications should be mandatory in the future. Societies like the EDNA/ERCA and the European Vascular Access Society or other dedicated initiatives should implement new structural approaches in the care for vascular access.

Technique and Timing of cannulation

While few scientific data concerning access handling and the outcome of specific cannulation techniques have been reported, the rope ladder technique is advised for the cannulation of AV grafts [5], to avoid graft disintegration and the formation of pseudo-aneurysms. In autogenous fistulae, particularly those with only a short vein segment available for needling, the buttonhole method is preferred over area puncture. The timing of access cannulation has been reported from the DOPPS study [6]. For grafts, first cannulation occurred within 2–4 weeks at 62% of USA, 61% of European and 42% of Japanese facilities. For fistulae, first cannulation occurred <2 months after placement in 36% of USA, 79% of European and 98% of Japanese facilities. Earlier cannulation of a newly placed fistula may be associated with impaired AVF survival. Cannulation after <2 weeks should be avoided while usually the minimum maturation period should be ideally >4 weeks. Adequate fistula flow (>600 cc/min) and diameter (>5 mm) measured by ultrasonography can improve the documentation of matured fistulas [7–9].

Recommendations for future research

Studies on cannulation complications and techniques are needed.

References

3. Hayes J. The role of nurses in maintenance of vascular access function. EDTNA/ERCA J 1998; XXIV: 9–12
5. Surveillance of vascular access

Guideline 5.1. Prior to any cannulation, autogenous arteriovenous fistulae and grafts should be assessed by physical examination (Evidence level IV).

Guideline 5.2. Objective monitoring of access function should be performed at a regular base by measuring access flow (Evidence level II).

Rationale

It is necessary to evaluate the vascular access clinically prior to any cannulation, both in autogenous AV fistulae and AV grafts. Inspection may reveal swelling, infection, haematoma, aneurysm or stenoses. Palpation evaluates the characteristic thrill and the intravascular pressure as it may differ between a pre- and a post-stenotic vessel segment. Post-stenotic collapse of the vein after elevation of the arm above the heart is proof of the haemodynamic relevance of a stenosis in autogenous AV fistulae. Auscultation is indicated if a stenosis is suspected and a high-pitched bruit can be heard in the presence of a stenosis. Clinical evaluation for the monitoring of prosthetic grafts may be difficult because of their rigidity, however, has been reported reliable to indicate flow changes [1]. Usually, no dilatation is observed, except in case of cannulation-related pseudo-aneurysm formation. Any suspicion of complications arising from the clinical examination should be confirmed by objective measurements. There are a wide variety of functional and anatomic imaging techniques such as access flow measurement, ultrasonography and angiography, each with their own applicability and accuracy rates. The goal of these measurements is the early diagnosis of AV fistula or AV graft dysfunction, aiming at a pre-emptive correction by interventional techniques [2]. This may reduce thrombosis rate in grafts and provide reliable information for early detection of venous stenoses. Early detection of venous stenoses is important for research. Various techniques to measure access flow have been described:

In summary, access flow measurement is an accurate predictor of fistula/graft dysfunction, which may result in access thrombosis. An access flow <600 ml/min in AV grafts [8–10] respectively, a reduction of flow >20% per month [9] or <300 ml/min in forearm AV fistulae is an indication for pre-emptive intervention [11]. For upper arm fistulas these flow data are lacking. Monthly flow measurements for grafts and three monthly for fistulae are recommended. Monitoring and surveillance with subsequently pre-emptive radiological or surgical intervention reduce the rate of thrombotic events in AV grafts as well as in AV fistulae, thus substantially decreasing patient morbidity, hospital admissions and costs of healthcare delivery [12–14]. Access monitoring programmes should be included as an integral part of routine dialysis care [13].

Recommendations for further research

Improvement of monitoring methods to accurately detect failing vascular access remains an important issue for research.

References

2. Sands JJ, Jabyac PA, Miranda CL, Kapsick BJ. Intervention based on monthly monitoring decreases hemodialysis access thrombosis. ASAIO J 1999; 45: 147–150
6. Diagnosis of stenoses in AV fistulae and AV grafts

Rationale

Clinical examination should remain the key method for the diagnosis of stenosis in autogenous arteriovenous fistulae and AV grafts [1]. However, the decision on whether clinical examination alone is sufficient or additional imaging examination must be performed before treatment, depends on local customs and practice. In cases of percutaneous treatment of stenoses, pre-, intra- and post-operative angiography must be conducted. When surgical revision is carried out, on-table angiography after completion should also be conducted when available. Angiography entirely for diagnostic purposes, without concomitant treatment should be avoided. Once thrombosis has occurred, surgical or interventional radiological clot removal is necessary to allow haemodialysis through the vascular access without the need for central venous catheter insertion. Correction of the underlying stenosis is an integral part of any declotting procedure.

Diagnosis of stenosis

Guideline 6.1. If a haemodynamically significant stenosis is suspected by physical examination and/or flow measurement, imaging should be performed as soon as possible (Evidence level III).

Guideline 6.2. Pre-emptive intervention should be performed percutaneously or surgically without further delay and imaging should be performed immediately before the intervention (Evidence level II).

Guideline 6.3. If the complete arterial inflow and venous outflow vessels need to be visualized, magnetic resonance angiography (MRA) should be performed (Evidence level III).

Angiography

Diagnostic angiography with iodinated contrast agents without subsequent dilatation or surgical revision is not advised. However, angiography is typically performed before, during and after dilatation or percutaneous thrombolysis and after surgical thrombectomy in order to guide the treatment and depict inflow as well as residual stenoses and/or clots or central venous obstruction [8]. To avoid impairment of residual renal function, gadolinium-enhanced digital subtraction angiography may be an alternative. Le Blanche et al. [9] found no impairment of renal function using gadolinium in their patient collective. They concluded, that gadolinium-enhanced digital subtraction angiography is an effective and safe method to assess the cause for malfunctioning AVFs. It can also be used to plan and perform percutaneous transluminal angioplasty. As an alternative, diluted iodine may be used, with a low risk of further renal function deterioration. Arterial inflow stenosis may be missed by diagnostic angiography. By introduction of a catheter through the access up into the arterial tree, also the subclavian and brachial arteries can be imaged [10].

Magnetic resonance angiography

MRA has been reported to be an useful, safe and practical imaging modality in complex fistulae with fewer complications and side-effects compared with fistulography [11]. It allows non-invasive evaluation of the arterial and venous system in one examination [12]. If MRA is performed as an alternative, it should be employed with contrast-enhanced (Gadolinium) technique (CE-MRA), since the latter shows a good visualization of arm veins with diameter measurements closely correlating with conventional venography [9]. In one study, MRA depicted all 13 stenoses and two false-positive findings, resulting in a sensitivity of 100% and a specificity of 94% for the arterial and venous tree [13]. Froger et al. found a sensitivity, specificity and positive and negative predictive value of MRA in the detection of stenosed vessel segments of 97, 99, 96 and 99%, respectively [14]. When central
venous obstruction is suspected, angiography of the complete venous outflow system up to the right atrium is mandatory. MRA of the central veins is accurate and even superior to contrast venography, which may fail to show all patent thoracic vessels [15,16]. However, it is an elaborate procedure, and therefore not possible in every hospital. Also, an additional intervention is not possible at the same time [17].

Recommendations for further research

New imaging modalities may be applied for a more accurate diagnosis of access stenosis.

References